If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying (a + 5) * x2 + (2a + 4) * x + a = 0 Reorder the terms: (5 + a) * x2 + (2a + 4) * x + a = 0 Reorder the terms for easier multiplication: x2(5 + a) + (2a + 4) * x + a = 0 (5 * x2 + a * x2) + (2a + 4) * x + a = 0 Reorder the terms: (ax2 + 5x2) + (2a + 4) * x + a = 0 (ax2 + 5x2) + (2a + 4) * x + a = 0 Reorder the terms: ax2 + 5x2 + (4 + 2a) * x + a = 0 Reorder the terms for easier multiplication: ax2 + 5x2 + x(4 + 2a) + a = 0 ax2 + 5x2 + (4 * x + 2a * x) + a = 0 Reorder the terms: ax2 + 5x2 + (2ax + 4x) + a = 0 ax2 + 5x2 + (2ax + 4x) + a = 0 Reorder the terms: a + 2ax + ax2 + 4x + 5x2 = 0 Solving a + 2ax + ax2 + 4x + 5x2 = 0 Solving for variable 'a'. Move all terms containing a to the left, all other terms to the right. Add '-4x' to each side of the equation. a + 2ax + ax2 + 4x + -4x + 5x2 = 0 + -4x Combine like terms: 4x + -4x = 0 a + 2ax + ax2 + 0 + 5x2 = 0 + -4x a + 2ax + ax2 + 5x2 = 0 + -4x Remove the zero: a + 2ax + ax2 + 5x2 = -4x Add '-5x2' to each side of the equation. a + 2ax + ax2 + 5x2 + -5x2 = -4x + -5x2 Combine like terms: 5x2 + -5x2 = 0 a + 2ax + ax2 + 0 = -4x + -5x2 a + 2ax + ax2 = -4x + -5x2 Reorder the terms: a + 2ax + ax2 + 4x + 5x2 = -4x + 4x + -5x2 + 5x2 Combine like terms: -4x + 4x = 0 a + 2ax + ax2 + 4x + 5x2 = 0 + -5x2 + 5x2 a + 2ax + ax2 + 4x + 5x2 = -5x2 + 5x2 Combine like terms: -5x2 + 5x2 = 0 a + 2ax + ax2 + 4x + 5x2 = 0 The solution to this equation could not be determined.
| 28n^2*m^2= | | 6x+35=11 | | 2a-4/5 | | 15x^2-x-6=230 | | -x^4+3x^2-x-9=0 | | 15x^2-x-6=236 | | x^3+x^2+x=5 | | x^2+2y^2=9 | | -6/7x-43.5 | | lx+3l=2x+9 | | 2x+3=5-6 | | -4x^2+x+14=0 | | 2x*sqrtx-7sqrtx-1=0 | | 3y+4y=48 | | -2x^3+x+14=0 | | 6x-9+4-10=6 | | 6n-14=-49+n | | 4x^3-12x=7 | | -2x^3+x-14=0 | | x^4-2x^2+2=2 | | x^3-3x+2=4 | | c=180-(2x+x+20) | | x(6x-6)=(6x+9)(x-2) | | -16+2x=-32+8 | | 6x(5x+3)= | | c=180-(2x+20+x) | | n/2=n-1 | | 6a+13=109 | | 3cd+5c-cd= | | 4x+4x=48 | | 9x-47=x+73 | | 11x-20=30 |